
IEEE 2nd International Conference on Computing, Applications and Systems (COMPAS 2025)
23–24 October 2025, Kushtia, Bangladesh

SignNet-Nano: Efficient Sign Language
Recognition for Real-Time Edge Deployment

Rifat Zabin∗, Md. Riasat Tanjim Hossain‡, Khandaker Foysal Haque§, K M Rumman§
∗ Department of Computer Science Engineering, BRAC University, Bangladesh

‡ Department of Electrical and Electronic Engineering, Islamic University of Technology, Dhaka, Bangladesh
§ IEEE Graduate Student Member

Abstract—Real-time american sign language (ASL) alpha-
bet recognition can enable inclusive communication on next-
generation edge devices like virtual reality (VR) headsets and
smart glasses. However, existing models are often too computa-
tionally demanding for such platforms, resulting in fast battery
depletion and degraded performance. To address this challenge,
we introduce SignNet-Nano, an ultra-lightweight convolu-
tional neural network (CNN), tailored specifically for efficient
ASL alphabet recognition on constrained edge hardware. The
proposed model integrates depthwise separable (DS) convolu-
tions, squeeze-and-excitation (SE) attention, and global average
pooling (GAP) to achieve high accuracy with a compact architec-
ture comprising only < 20K parameters and < 0.1MB model
size. Unlike prior work, SignNet-Nano is explicitly designed
with deployment efficiency as a primary goal, enabling real-time
inference with minimal performance degradation while requir-
ing significantly less energy, latency, computation, and memory
usage than state-of-the-art (SOTA) lightweight edge models. We
profile inference performance in terms of Floating Point Op-
erations (FLOPs), inference latency, frames per second (FPS),
and memory footprint on a diverse set of platforms, includ-
ing three edge devices— Jetson Nano, Jetson Xavier NX, and
Raspberry Pi 4— as well as three high-performance systems—
Apple Mac M3 (MPS backend), NVIDIA RTX 4070 GPU, and
an Intel Core i7 12th Gen CPU. Experimental results show that
SignNet-Nano achieves classification accuracy within 1% of
the best-performing baseline while reducing inference time (i.e.,
latency) and FLOPs by up to 73.7% and 97.1%, respectively,
while improving the energy efficiency by up to 79.3%.

I. INTRODUCTION

The ability to recognize american sign language (ASL)
alphabet gestures in real time has the potential to significantly
enhance inclusive communication [1], [2], particularly for
the deaf and hard-of-hearing community. This is increasingly
relevant in the context of next-generation edge-centric plat-
forms such as augmented reality (AR) and virtual reality
(VR) headsets, smart glasses, and wearable devices [3], [4],
where real-time gesture-based input can serve as an intuitive
interaction modality. However, these devices are still quite
limited in terms of the performance delivered to the end
user. Studies indicate that achieving truly immersive 360◦

video experiences requires at least 120 Hz frame rates and
8K resolution to avoid pixelation and mitigate motion sick-
ness [5]. In contrast, most wireless VR headsets available
today are limited to 4K resolution, with only a few models
supporting frame rates in the 100–120 Hz range [6]. More-
over, these devices often lack the computational resources and
power sources necessary to run complex deep neural network
(DNN) workloads efficiently. As a result, deploying such

models can lead to either rapid battery depletion or substantial
degradation in application performance [7].

Despite recent advances in deep learning-based sign
language recognition, most existing models are designed
with server-grade GPUs in mind. Architectures such as
ResNet18 [8] and even lightweight alternatives like Mo-
bileNetV2 [9] remain too computationally demanding for
real-time deployment on embedded platforms. Their high pa-
rameter count, high computational demand (i.e., high Float-
ing Point Operations (FLOPs)), and poor latency performance
contribute to thermal throttling, reduced battery life, and a
sub-par user experience— ultimately limiting their practical-
ity for edge-centric applications.

Thus, to address these challenges, we present
SignNet-Nano, an ultra-lightweight convolutional neural
network (CNN) architecture explicitly designed for real-time
ASL alphabet recognition on resource-constrained devices.
Our key design philosophy is to achieve high accuracy
with minimal computational overhead. SignNet-Nano
integrates depthwise separable (DS) convolutions, squeeze-
and-excitation (SE) attention, and global average pooling
(GAP) to maintain discriminative power while minimizing
the required parameter count and FLOPs. To ensure practical
deployability, we conduct a comprehensive evaluation
across a diverse set of platforms, including three widely
accessible edge devices— Jetson Nano, Jetson Xavier NX,
and Raspberry Pi 4— as well as high-performance systems
like an Apple MacBook—using metal performance shaders
(MPS), NVIDIA RTX 4070 GPU, and Intel Core i7 CPU.

Summary of Contributions
• We propose SignNet-Nano, a compact CNN architec-
ture with fewer than 20K parameters, featuring DS convo-
lutions and SE attention modules for efficient ASL alphabet
recognition.
• We present a unified deployment and benchmarking frame-
work across heterogeneous devices, offering a realistic de-
ployment performance comparison of SignNet-Nano with
state-of-the-art (SOTA) approaches— ResNet18 [8] and Mo-
bileNetV2 [9].
• We demonstrate real-time inference capability of
SignNet-Nano on three different edge devices— Jetson
Nano, Raspberry Pi 4, and Jetson Xavier NX, along with
other high-performing devices with significant improvements
in frames per second (FPS), energy consumption, and
inference latency compared to the SOTA models.979-8-3315-5525-2/25/$31.00 © 2025 IEEE

• To foster reproducibility and future research, we pledge to
release our code base along with the benchmarking scripts
publicly at https://github.com/rifatzabin/SignNet-Nano.

II. RELATED WORKS

Lightweight deep learning architectures have become a
crucial scope of research in resource-constrained computer
vision applications. EfficientNet, introduced by Tan and
Le, employed compound scaling to optimize depth, width,
and resolution, demonstrating strong performance-efficiency
tradeoffs, making it suitable for vision tasks with limited
computing resources [10]. He et al. proposed ResNet as a
family of scalable models that balance precision and effi-
ciency, leveraging residual connections that facilitate gradient
flow in shallower networks [8]. MobileNetV2, proposed by
Sandler et al., employs DS convolutions and inverted resid-
uals with linear bottlenecks, making it highly suitable for
mobile and embedded scenarios [9].

In the context of ASL recognition, Kasapbaşi et al. de-
veloped DeepASLR— a lightweight CNN tailored for ASL
alphabet recognition. Their design focused on faster conver-
gence and lower training complexity while achieving com-
petitive accuracy [11]. Sharma and Singh proposed ASL-
3DCNN, a depth image-based 3D CNN model to recognize
ASL alphabets, utilizing spatiotemporal features to improve
the accuracy of sign language classification [12]. Castro et
al. proposed a sensor-free sign language recognition sys-
tem using a multi-stream 3D CNN that fuses RGB frames,
segmented hand and face regions, joint motion features,
and generative adversarial network-generated depth maps.
Their approach eliminates the need for depth sensors and
demonstrates the effectiveness of multi-modal input for sign
language recognition [13].

Regarding edge deployment, Sharma et al. explored the
performance of a pose recognition model implemented on
a Raspberry Pi 4, showing that with proper optimization,
embedded inference is feasible even under tight memory
and latency constraints [14]. Baciu et al. proposed “MLino
Benc” [15], an open-source benchmarking tool that enables
comprehensive evaluation of both classical machine learning
models and neural networks on microcontroller-based edge
devices. However, it lacks the support for power consumption
analysis and remains limited to classification tasks.

Despite these advancements, the mentioned architectures
consistently lack ultra-lightweight ASL models that are ex-
plicitly profiled on real-world embedded devices.

III. UNDER THE HOOD: DESIGN AND TRAINING OF
SIGNNET-NANO

A. Model Architecture

To meet the dual objectives of deployment efficiency and
classification accuracy, SignNet-Nano is designed as a
compact CNN tailored specifically for edge devices. The ar-
chitecture incorporates a lightweight feature extraction back-
bone based on DS convolutions, enhanced with SE attention

Input

Conv (3×3) +
MaxPool

Global Avg Pool

DS Block 1 (32) + SE
+ MaxPool

DS Block 3 (96) + SE

DS Block 2 (64) + SE
+ MaxPool

Dropout ⇒ FC ⇒
29 Classes

Depthwise Separable
Conv Blocks

Fig. 1: Overview of the SignNet-Nano architecture.

modules, and concludes with GAP for compact prediction.
The overall structure is illustrated in Fig. 1.

The network processes 224 × 224 × 3 input RGB images
through an initial convolutional layer, followed by a stack
of DS convolution blocks that progressively increase feature
depth while reducing spatial dimensions. Each block is aug-
mented with a SE attention module to enhance channel-wise
feature selectivity. Finally, a GAP layer aggregates spatial
information, and a fully connected output layer maps the
latent features to the ASL alphabet classes. The following
components describe the technical building blocks of this
architecture in detail.

DS Convolutions: DS convolutions offer a more efficient
alternative to standard convolutional layers by decoupling
spatial and cross-channel feature learning. In a standard con-
volution, spatial filters are applied across all input and output
channels using a kernel of shape K ×K ×Cin ×Cout, where
K is the spatial kernel size (e.g., 3 for a 3 × 3 filter), Cin
is the number of input channels, and Cout is the number of
output channels. In contrast, depthwise separable convolution
factorizes this operation into two stages— (i) DS, which
applies a separate K × K filter to each of the Cin input
channels individually, and (ii) pointwise convolution, which
uses 1 × 1 × Cin × Cout filters to combine the resulting
feature maps across channels. Mathematically, given an input
feature map X ∈ RH×W×Cin , where H and W represent the
spatial height and width— the number of FLOPs required for
a standard convolution is denoted by—

FLOPsstandard = H ·W ·K2 · Cin · Cout. (1)

Whereas, for a DS convolution, this reduces significantly due
to the decoupled operations as—

FLOPsDS = H ·W ·
(
K2 · Cin + Cin · Cout

)
, (2)

demonstrating substantial computational savings, especially
when K or Cout is large. This leads to a relative computational

saving of approximately 1
Cout

+ 1
K2 , which is significant

in practical settings where K = 3 and Cout ≫ 1. In
SignNet-Nano, all convolutional layers beyond the initial
input layer utilize this structure to substantially reduce infer-
ence cost while maintaining representational capacity.

GAP: To further reduce the number of trainable parame-
ters and minimize the risk of overfitting, SignNet-Nano
replaces traditional fully connected layers with a GAP layer
prior to classification. GAP operates by aggregating spatial
information across each feature channel, effectively reduc-
ing the spatial dimensions to a single scalar per channel.
Formally, for a feature tensor F ∈ RH×W×Cin , the GAP
operation produces a Cin dimensional vector z, by averaging
each channel spatially as Equation 3.

zc =
1

H ·W

H∑
i=1

W∑
j=1

Fi,j,c, for c = 1, . . . , Cin (3)

This operation compresses the spatial structure while preserv-
ing the strength of feature activations in each channel, making
it an effective replacement for dense layers in compact CNN
architectures. Moreover, it enables a smoother transition into
the final classification layer with minimal computational
overhead.

SE Attention: To enhance the representational power of
the lightweight convolutional backbone, each DS block in
SignNet-Nano is augmented with a SE module. The SE
block introduces a lightweight channel attention mechanism
that adaptively recalibrates feature maps by modeling inter-
channel dependencies. Given an intermediate feature map
U ∈ RH×W×Cin , the SE block performs three sequential
operations—
1) Squeeze: Spatial information is aggregated using
GAP to generate a channel descriptor vector as:

sc =
1

H ·W

H∑
i=1

W∑
j=1

Ui,j,c, for c = 1, . . . , Cin, (4)

where, sc is the c-th component of the descriptor vector s
and represents the average activation of channel c across all
spatial locations.
2) Excitation: The descriptor vector s is passed
through a two-layer fully connected network (a bottleneck
structure) with a reduction ratio r, producing a channel-wise
gating vector e ∈ RC :

e = σ (W2 · ReLU(W1 · s)) (5)

Here, W1 ∈ RC
r ×C and W2 ∈ RC×C

r are trainable
parameters and σ(·) denotes the sigmoid activation function
applied element-wise.
3) Scale: The original feature map is reweighted
channel-wise using the learned excitation vector, Ũi,j,c =
ec ·Ui,j,c.

This gating mechanism allows the network to selectively
amplify informative channels while suppressing less rele-
vant ones, thereby improving discriminative capacity. In the

B

Q U

NothingJ Space

X F

Fig. 2: Example images from the ASL Alphabet dataset
showing hand gestures corresponding to various classes— B,
J, Nothing, Space, Q, U, X, F.

context of ASL alphabet recognition, where many gestures
differ by subtle features, this fine-grained channel emphasis
contributes to the overall robustness of SignNet-Nano.

B. Dataset and Preprocessing

We evaluate the proposed SignNet-Nano model using
the publicly available Kaggle ASL Alphabet dataset1 [16].
The dataset consists of 29 classes, covering the 26 letters
of the English alphabet along with three additional classes:
“nothing”, “space”, and “delete”. Each class contains approx-
imately 3, 000 RGB images of resolution 200 × 200 pixels,
resulting in a total of over 87, 000 labeled samples. Example
images from the dataset illustrating a variety of ASL gestures
are shown in Fig. 2.

For training and validation, we randomly split the dataset
into an 80% training set and a 20% validation set, ensuring a
uniform distribution of samples across all classes. The split is
performed only once and used consistently across all experi-
ments to maintain fair comparison. To enhance generalization
and reduce overfitting, we apply a set of data augmentation
techniques during training. Each image is resized to 224×224
pixels and normalized to have zero mean and unit variance
per channel. Augmentations include random horizontal flips,
small rotations (up to 15◦), and color jittering to simulate
real-world lighting variations. Furthermore, we apply label
smoothing during training to prevent the model from be-
coming overly confident in its predictions, which improves
robustness and generalization.

C. Training Strategy

To train the proposed SignNet-Nano model effectively
while maintaining generalization and stability, we adopt a
carefully tuned strategy combining robust optimization, reg-
ularization, and early termination. We use the categorical
cross-entropy loss function with label smoothing to mitigate
overfitting and reduce model overconfidence. Specifically,
the one-hot target distribution is adjusted using a smoothing
factor ϵ = 0.1, such that the ground-truth class receives a

1https://www.kaggle.com/datasets/grassknoted/asl-alphabet

0 20 40
Epoch

25

50

75

100

A
cc

ur
ac

y
(%

)

Ea
rly

St
op

Ea
rly

St
op

Training Accuracy

0 20 40
Epoch

Ea
rly

St
op

Ea
rly

St
op

Validation Accuracy
SignNet-Nano ResNet18 MobileNetV2

Fig. 3: Training and the validation accuracy of
SignNet-Nano and SOTA baseline models. MobileNetV2
and ResNet18 converge faster, while SignNet-Nano
maintains stable learning with competitive final accuracy.

label of (1−ϵ) while the remaining probability mass is evenly
distributed among the other classes. This encourages the
network to maintain predictive flexibility and has shown to
improve performance, especially in multi-class classification
tasks with subtle inter-class differences, such as ASL ges-
tures. Optimization is carried out using the Adam optimizer
with default parameters β1 = 0.9 and β2 = 0.999, and an
initial learning rate of 1 × 10−3. To enhance convergence
and avoid sharp minima, we employ a cosine annealing
learning rate scheduler, which gradually reduces the learning
rate to near zero as training progresses. This scheduling
policy helps in achieving smoother convergence and better
generalization during later stages of training. The model is
trained using a batch size of 64 and monitored via validation
loss. We apply early stopping with a patience of 5 epochs,
halting training if the validation loss does not improve, which
prevents overfitting and reduces unnecessary training time.
Although all models converge within 35 to 45 epochs, both
MobileNetV2 and ResNet18 exhibit faster convergence com-
pared to SignNet-Nano, which learns more gradually but
achieves stable and competitive accuracy, as illustrated in
Fig. 3. All training is performed using PyTorch 2.0.1 on
a workstation equipped with an NVIDIA RTX 4070 GPU
(16 GB VRAM). The dataset is preprocessed on the go
using the TorchVision data pipeline, and training is repeated
across three different random seeds to ensure stability and
reproducibility of the reported results.

IV. REAL-WORLD DEPLOYMENT AND BENCHMARKING

To assess the practical deployability of SignNet-Nano,
we conduct real-world benchmarking across a diverse
range of platforms, spanning both edge devices and high-
performance computing systems. The goal is to evaluate
the model’s latency, throughput, and memory efficiency in
realistic scenarios using a unified benchmarking script imple-
mented in PyTorch.

The tested edge devices include the NVIDIA Jetson Nano,
NVIDIA Jetson Xavier NX, and Raspberry Pi 4, which rep-
resent common low-power platforms suitable for on-device

Remote Execution in
the Edge Devices

Jetson Xavier NX Jetson Nano

Raspberry Pi 4

Fig. 4: Experimental setup for remote edge deploy-
ment at BRAC University, where all models, including
SignNet-Nano are benchmarked on the edge testbed.

inference. In addition, we benchmark the models on three
high-performance systems— an Apple MacBook powered by
the M3 chip with MPS, an NVIDIA RTX 4070 GPU using
the CUDA backend, and an Intel Core i7 12th Gen CPU.
We execute inference remotely on these edge devices using
benchmarking scripts to replicate real-world deployment, as
depicted in Figure 4.

Our benchmarking script features automatic device
detection to utilize the best available compute back-
end—CUDA, MPS, or CPU—depending on the plat-
form. Latency is measured using high-resolution timers
with time.perf_counter() and synchronized using
torch.cuda.synchronize() where applicable to en-
sure accurate measurement. The main performance metrics
include per-sample latency, inference throughput in FPS,
energy consumption per sample, and the serialized model
size. All the models are evaluated using pretrained weights
on the same 20% test split of the ASL sign dataset. The input
resolution is fixed at 224 × 224 pixels, and inference is run
with a batch size of 64 across all platforms to ensure con-
sistency. Additionally, we compute the number of FLOPs for
each model using the ptflops profiling library to quantify
computational complexity.

This benchmarking setup provides a standardized, fair, and
reproducible evaluation framework, allowing us to directly
compare the performance of SignNet-Nano against SOTA
models across heterogeneous deployment environments. The
results demonstrate that SignNet-Nano is highly suitable
for real-time ASL recognition on constrained edge hardware
while maintaining competitive performance.

V. PERFORMANCE EVALUATION

A. Classification Performance

We evaluate the classification performance of
SignNet-Nano in comparison with two widely used

SignNet
Nano

ResNet
18

MobileNet
v2

100

103

106
N

o.
of

Pa
ra

m
et

er
s

17K

11.7M 3.5M

(a) Number of model parameters

SignNet
Nano

ResNet
18

MobileNet
v2

100

103

106

109

FL
O

Ps

106M
3650M 641M

(b) Computational burden in terms of FLOPs

SignNet
Nano

ResNet
18

MobileNet
v2

0

25

50

Si
ze

(M
B)

0.1

42.8

8.8

(c) Memory footprint
Fig. 5: Performance comparison of SignNet-Nano, ResNet18 and MobileNetV2 in terms of parameters, computation burden
(FLOPs) and memory footprint.

J.
N

an
o

X
.N

X

R
Pi

4

R
T

X
40

70
M

3
M

PS i7
12

70
00

5

50
300

3000

FP
S

SignNet ResNet18 MobileNetv2

(a) Throughput comparison in terms of FPS

J.
N

an
o

X
.N

X

R
Pi

4

R
T

X
40

70
M

3
M

PS i7
12

70
0

1

5

25

L
at

en
cy

(m
s)

SignNet ResNet18 MobileNetv2

(b) Latency analysis

J.
N

an
o

X
.N

X

R
Pi

4

R
T

X
40

70
M

3
M

PS i7
12

70
05

50

300

1800

E
ne

rg
y/

sa
m

pl
e

(m
J) SignNet ResNet18 MobileNetv2

(c) Energy consumption analysis

Fig. 6: Throughput, latency and energy consumption analysis across heterogenous edge and high-performance machines.

TABLE I: Comparison of classification performance across
different models

Model Accuracy (%) Precision Recall F1 Score

SignNet-Nano 99.07 0.9908 0.9907 0.9907
ResNet18 100.00 1.0000 1.0000 1.0000
MobileNetV2 99.99 0.9999 0.9999 0.9999

lightweight edge models— ResNet18 and MobileNetV2,
employing the ASL dataset on the basis of standard metrics:
accuracy, precision, recall, and F1 score. SignNet-Nano
demonstrates competitive accuracy and F1-score with values
of 99.07% in accuracy and 0.9907 in F1-score. Table I
depicts that the SignNet-Nano achieves performance
within 1% of the more resource-intensive models, indicating
its capability to effectively preserve prediction performance
despite its ultra-lightweight design.

B. Ablation Study

To assess the impact of each core component in
SignNet-Nano, we conduct an ablation study by se-
lectively removing architectural elements and measuring
changes in accuracy, FLOPs, and parameter count, as shown
in Table II. Removing the squeeze-and-excitation (SE) mod-
ule results in a 0.45% drop in accuracy, confirming the benefit
of channel-wise attention with minimal overhead. Replacing
GAP with a fully connected layer increases parameter count
by over 2× and leads to a performance drop, likely due
to overfitting caused by the denser feature representation.
Finally, replacing DS convolutions with standard convolu-
tions causes a nearly 4× increase in FLOPs and a 4.5×
increase in parameters, without any substantial gain in ac-
curacy. These findings validate the architectural efficiency

TABLE II: Ablation study showing the impact of architectural
components on accuracy, FLOPs, and parameter count.

Variant Accuracy (%) FLOPs (M) Params

SignNet-Nano (Full) 99.07 106.2 17.4K
w/o SE Module 98.62 106.2 16.8K
w/o GAP (FC Layer Added) 97.91 128.5 38.9K
w/o DS Convolutions 97.23 402.8 78.2K

of SignNet-Nano and highlight the necessity of its design
choices for lightweight deployment.

C. Real-World Deployment Performance

1) Computational Burden and Memory Footprint: The
deployment efficiency of SignNet-Nano across a diverse
set of hardware platforms in comparison with the other
two SOTA models is depicted in Fig. 5. In terms of com-
putational burden, SignNet-Nano incurs only 106.2M
FLOPs and comprises 17.4K parameters, which corresponds
to an 83.4% and 99.5% reduction, respectively, in compari-
son to MobileNetV2. When benchmarked against ResNet18,
SignNet-Nano demonstrates a 97.1% reduction in FLOPs
and a 99.85% reduction in parameter count, underscoring
the architectural efficiency for resource-constrained inference
scenarios. Moreover, as depicted in Fig. 5c, SignNet-Nano
offers the minimal memory footprint of only around 0.1 MB,
making it 110× lower than MobileNetV2 (8.8 MB) and 535×
smaller than ResNet18 (42.8 MB).

2) Throughput (FPS): In terms of inference throughput,
SignNet-Nano consistently delivers the highest frame
rates across all platforms as presented in Fig. 6a. The ad-
vantage becomes more pronounced on high-end devices like
RTX 4070— it achieves a peak throughput of 2566.9 FPS,
which is a 142.5% improvement over ResNet18 (1058.2 FPS)

and 280% over MobileNetV2 (675.9 FPS). Similar perfor-
mance advantages are observed on other high-performance
systems such as Apple M3 and Intel Core i7, where
SignNet-Nano maintains frame rates well above real-time
requirements. On edge platforms, including Jetson Nano,
Jetson Xavier NX, and Raspberry Pi 4, SignNet-Nano
continues to outperform both ResNet18 and MobileNetV2
by a significant margin. This ability to maintain high FPS
across heterogeneous hardware makes SignNet-Nano par-
ticularly effective for latency-sensitive and real-time sign
language detection for inclusive communication.

3) Latency: As depicted in Fig. 6b, SignNet-Nano
demonstrates minimal and stable inference latency across
all platforms, with the lowest response time on RTX 4070,
where it achieves the latency of 0.389 ms, representing a
58.8% and 73.7% reduction compared to ResNet18 (0.945
ms) and MobileNetV2 (1.479 ms), respectively. Across other
high-performance systems such as Apple M3 (4.58 ms) and
Intel Core i7 (4.61 ms), latency remains under 6 ms for
SignNet-Nano, maintaining a consistent advantage over
other competing models. On edge platforms including Jetson
Nano, Jetson Xavier NX and Raspberry Pi 4, the latency of
SignNet-Nano remains stable within the 4–6 ms range. In
contrast, baseline models show a sharper increase in latency
as compute resources decrease. However, SignNet-Nano
achieves the lowest latency across all the devices, highlight-
ing the architectural efficiency and robustness of the proposed
model in sustaining real-time responsiveness, regardless of
hardware constraints.

4) Energy Efficiency: As shown in Fig. 6c, our proposed
model exhibits the lowest energy consumption across all
evaluated platforms, making it highly suitable for energy-
constrained edge deployments. The most efficient result is
achieved on the Apple M3, where SignNet-Nano con-
sumes only 0.0192 J per inference, marking a 74.4% and
79.3% reduction compared to ResNet18 (0.0756 J) and Mo-
bileNetV2 (0.0926 J), respectively. This energy advantage
persists across both high-end systems and edge devices. For
instance, on Jetson Xavier NX, SignNet-Nano consumes
0.0458 J, which is 51.3% and 75.1% lower than ResNet18
(0.0941 J) and MobileNetV2 (0.1838 J), respectively. Similar
trends are observed across Jetson Nano, Raspberry Pi 4, and
RTX 4070 platforms. These results validate the scalability
and efficiency of our model, ensuring energy-aware real-
time inference irrespective of the computational budget or
platform constraints.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced SignNet-Nano, an ultra-
lightweight CNN architecture specifically designed for real-
time ASL recognition on resource-constrained edge devices.
By leveraging DS convolutions, SE attention, and GAP,
SignNet-Nano achieves a compact design with under 20K
parameters and a model size less than 0.1 MB, while main-
taining accuracy within 1% of significantly larger state-of-
the-art models. We evaluated SignNet-Nano across six

heterogeneous platforms, including both high-performance
systems and embedded edge devices, and demonstrated its
consistent superiority in terms of latency, throughput, and en-
ergy efficiency over the existing light-weight SOTA models.

Looking forward, we aim to extend the core design prin-
ciples of SignNet-Nano to a broader range of real-time
computer vision tasks beyond ASL recognition, including
vision-based human-computer interaction. Additionally, we
plan to explore model generalization across diverse datasets
and environmental conditions, ensuring robustness against
variations in lighting, background, and camera hardware.

REFERENCES

[1] M. Sen and R. Rajkumar, “Fostering inclusive communication: A tool
integrating machine translation, nlp, and audio-to-sign-language con-
version for the deaf,” in 2024 International Conference on Intelligent
and Innovative Technologies in Computing, Electrical and Electronics
(IITCEE). IEEE, 2024, pp. 1–6.

[2] B. Kaur, A. Chaudhary, S. Bano, Yashmita, S. Reddy, and R. Anand,
“Fostering inclusivity through effective communication: Real-time sign
language to speech conversion system for the deaf and hard-of-hearing
community,” Multimedia Tools and Applications, vol. 83, no. 15, pp.
45 859–45 880, 2024.

[3] K. F. Haque, F. Meneghello, M. E. Karim, and F. Restuccia,
“Sawec: Sensing-assisted wireless edge computing,” arXiv preprint
arXiv:2402.10021, 2024.

[4] K. F. Haque, F. Meneghello, and F. Restuccia, “Integrated sensing and
communication for efficient edge computing,” in 2024 20th Interna-
tional Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob). IEEE, 2024, pp. 611–614.

[5] M. A. Rupp, “Is it getting hot in here? the effects of vr headset micro-
climate temperature on perceived thermal discomfort, vr sickness, and
skin temperature,” Applied Ergonomics, vol. 114, p. 104128, 2024.

[6] K. Selvan, M. Mina, H. Abdelmeguid, M. Gulsha, A. Vincent, and
A. Sarhan, “Virtual reality headsets for perimetry testing: a systematic
review,” Eye, vol. 38, no. 6, pp. 1041–1064, 2024.

[7] J. Soni, “Apple vision pro vs. meta quest 3: The next generation
of vr,” Jan 2024. [Online]. Available: https://www.dexerto.com/tech/
apple-vision-pro-vs-meta-quest-3-2168054/

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[9] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018,
pp. 4510–4520.

[10] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[11] A. Kasapbaşi, A. E. A. Elbushra, A.-H. Omar, and A. Yilmaz, “Deep-
aslr: A cnn based human computer interface for american sign language
recognition for hearing-impaired individuals,” Computer methods and
programs in biomedicine update, vol. 2, p. 100048, 2022.

[12] S. Sharma and K. Kumar, “Asl-3dcnn: American sign language recog-
nition technique using 3-d convolutional neural networks,” Multimedia
Tools and Applications, vol. 80, no. 17, pp. 26 319–26 331, 2021.

[13] G. Z. De Castro, R. R. Guerra, and F. G. Guimarães, “Automatic
translation of sign language with multi-stream 3d cnn and generation
of artificial depth maps,” Expert Systems with Applications, vol. 215, p.
119394, 2023.

[14] V. Sharma, A. Sharma, and S. Saini, “Real-time attention-based em-
bedded lstm for dynamic sign language recognition on edge devices,”
Journal of Real-Time Image Processing, vol. 21, no. 2, p. 53, 2024.

[15] V.-E. Baciu, J. Stiens, and B. da Silva, “Mlino bench: A comprehensive
benchmarking tool for evaluating ml models on edge devices,” Journal
of Systems Architecture, vol. 155, p. 103262, 2024.

[16] A. Nagaraj, “Asl alphabet,” https://www.kaggle.com/datasets/
grassknoted/asl-alphabet, 2018, dOI: 10.34740/KAGGLE/DSV/
29550.

