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PULSE: Physics-Aware Temporal Embedding Learning for Domain
Adaptive Wireless Sensing

Rifat Zabin, Md. Golam Rabiul Alam

Abstract—We present PULSE, a lightweight domain-adaptive
sensing framework that learns the physics-aware temporal em-
beddings, extracted from Wi-Fi channel frequency response
(CFR). Unlike the existing approaches where the CFR is directly
used as the input the tensor for Learning model, PULSE extracts
temporal descriptors and embeds them through a light-weight 1D
convolutional network that jointly learns discriminative represen-
tations and sensing semantics. The framework achieves over 99%
accuracy while reducing 85% of the input tensor dimensionality
and maintaining low inference latency, demonstrating suitability
for real-time edge inference. Furthermore, through supervised
contrastive pretraining and few-shot adaptation, PULSE general-
izes effectively to unseen domains using only 5 s worth of labeled
data, outperforming the state-of-the-art frameworks. We have
extensively evaluated PULSE sesning framework with publicly
available dataset of 20 different activities collected over multiple,
subjects and propagation environment. For reproducibility, we
pledge to share our code base at: https://github.com/rifatzabin/
PULSE.

I. INTRODUCTION

Wireless sensing is perceived from the variations in multi-
path propagation due to the changes in physical world [1]. It is
emerging as a non-intrusive and privacy-preserving technology
with applications spanning healthcare, smart homes, and enter-
tainment systems. However, real-time inference on resource-
constrained edge devices remains challenging due to the high
dimensionality of channel frequency response (CFR) data and
the computational burden of processing it at fine temporal
scales [2]. Moreover, existing lightweight Wi-Fi sensing mod-
els—although designed to reduce overhead—often suffer from
degraded reliability, especially in dynamic environments where
subtle activity variations are easily masked by lossy feature
representations [1], [3]. State-of-the-art (SOTA) approach,
such as dynamic entropy-based subchannel selection, still rely
on full CFR and high-resolution spatial features extracted via
CNN and CBAM modules [3], making it compute intensive for
edge devices. Meneghello et al. proposed a phase sanitization
technique leveraging Doppler shifts to build an environment-
independent human activity recognition system [4]. However,
it is limited to high motion activity and involves only 7
classes. Haque et al. developed ATEN, a domain gener-
alization framework integrating TCN to extract long-range
temporal dependencies for gesture recognition from mmWave
MIMO CFR [5]. However, it is compute intensive because
of its long-range temporal dependencies. Similarly, Yang et
al. transformed CFR into time–frequency spectrograms and
achieved domain adaptability through spectrogram augmen-
tation, self-contrastive learning, and adversarial training [6].
Despite recent progress, most wireless sensing models remain
environment-dependent, computationally heavy, and poorly
interpretable, limiting their real-time adaptability and deploy-
ment on edge devices.
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Fig. 1: Temporal evolution of CFR for different classes of activities.

To address those issues, we investigate the temporal dis-
criminability of wireless signals in performing the senisng
tasks. Our intuition is that physics-aware temporal features of
the CFR can reveal distinct class-dependent patterns, enabling
accurate sensing with lightweight models while reducing in-
put dimensionality and computational cost. We validate this
insight through a preliminary analysis of Wi-Fi CFR data for
three simple activity classes– empty, high-mobility, and low-
mobility through extracting physics-aware temporal descrip-
tors (as detailed in Section ]II-A). As presented in Fig. 1a
and 1b, The CFR magnitude traces exhibited distinct temporal
patterns across activities— low-mobility gestures produced
smooth, stable CFR variations, whereas high-mobility activ-
ities caused sharp, transient fluctuations. Moreover, when the
temporal descriptors are projected into latent space, the result-
ing t-SNE embedding as presented in Fig. 1c revealed clearly
separable clusters corresponding to different activities. This
observation highlighted a key insight: the temporal evolution
of CFR alone encodes sufficient discriminative structure to
perform sensing tasks including activity recognition, gesture
recognition, and gait recognition even without full CFR ma-
trices.

This motivated the design of PULSE, which leverages the
intrinsic temporal structure of wireless channels for sensing.
Instead of relying on raw, high-dimensional CFR, PULSE
distills physically interpretable temporal features and embeds
them into a latent representation space, achieving substantial
dimensionality reduction and robustness—ideal for resource-
constrained edge devices. A lightweight 1D CNN then learns
discriminative temporal embeddings directly from these de-
scriptors, jointly performing feature embedding and prediction
for diverse sensing tasks. To ensure adaptability across unseen
domains i.e., unseen environment and subjects, PULSE em-
ploys a few-shot pretraining strategy combining cross-entropy
and supervised contrastive learning to produce transferable
embeddings.

Summary of Novel Contributions:

https://github.com/rifatzabin/PULSE
https://github.com/rifatzabin/PULSE
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Fig. 2: System Overview of the Proposed PULSE Wireless Sensing Framework

• PULSE introduces a physics-aware temporal embedding
framework that extracts temporal descriptors pertaining to
channel dynamics from CFR, which preserves the discrimi-
native structure while reducing input size by up to 75% for
efficient edge sensing.
• PULSE proposes a unified temporal embedding based learn-
ing pipeline, where a lightweight 1D CNN jointly performs
feature embedding and activity inference. Unlike conventional
sensing approaches, this joint learning enhances discriminabil-
ity and minimizes redundancy in temporal representations.
• PULSE integrates a supervised contrastive pretraining and
prototype-based few-shot adaptation strategy, achieving strong
cross-domain generalization from only a few seconds of la-
beled data.
• PULSE achieves 99.8% accuracy in recognizing 20 activi-
ties within known environments and 95–96% when tested in
unseen domains, improving cross-domain performance by up
to 9% over SOTA approach– BeamSense [7].

II. PULSE SYSTEM MODEL

In IEEE 802.11ac/ax systems, the multi-antenna transmitter
(beamformer) obtains channel knowledge through a channel
sounding procedure. It periodically transmits Null Data Packet
(NDP) frames containing known Long Training Fields (LTFs),
which each receiver (beamformee) uses to estimate the Chan-
nel Frequency Response (CFR) H ∈ CK×M×N , where K,
M , and N represent the numbers of sub-channels, transmit,
and receive antennas, respectively. The CFR captures the
frequency-selective propagation between each antenna pair,
and after quantization, is fed back to the beamformer for
precoding. These estimated CFR values, which encode the
temporal and spatial dynamics of the wireless channel, serve
as the raw input to subsequent learning task.

Building upon this foundation, PULSE transforms the ac-
quired CFR into compact, interpretable temporal embeddings
for efficient and adaptive sensing as illustrated in Fig 2.
PULSE operates through three sequential stages: (i) temporal
feature extraction from CFR streams, (ii) feature embedding
and discriminative learning using a lightweight 1D CNN, and
(iii) few-shot domain adaptation for robust and generalizable
inference.

A. Temporal Feature Extraction with PULSE

The PULSE framework begins by converting raw Channel
Frequency Response (CFR) into temporally structured features
that describe how the wireless channel evolves over time.
Each CFR trace is stored as a complex matrix H ∈ CT×F ,
where T and F denote the temporal and frequency dimensions,
respectively. This matrix captures the instantaneous amplitude
and phase response of the wireless channel between transmitter
and receiver antennas. However, CFR at this granularity is
both high-dimensional and noisy. To make it more suitable for
learning, PULSE extracts low-dimensional, physically mean-
ingful features that retain temporal variations linked to human
motion or environmental dynamics.

Sub-channel Grouping and Feature Computation Since
CFR often exhibits strong frequency correlation, PULSE first
divides all the sub-channels, F into k contiguous groups, each
having F/k number of component. This band-based grouping
provides a trade-off between spectral resolution and robust-
ness, ensuring that small-scale fading effects do not dominate
the temporal behavior. Within each group, both amplitude and
phase components of the CFR are analyzed through magnitude
and phase decomposition. For every time instant t and sub-
channel group k, PULSE computes nine temporal features that
summarize statistical and temporal changes within that sub-
channel group:

f1(t) = meanFk
(|H|), f2(t) = stdFk

(|H|),
f3(t) = medianFk

(|H|), f4(t) = p75(|H|)− p25(|H|),
f5(t) = ∆tf1(t), f6(t) = ∆tmeanFk

(∠H),

f7(t) = stdFk
(∠H), f8(t) = ∆tmeanFk

(∠H),

f9(t) = log
(
ε+ meanFk

(|H|2)
)

(1)
where ∆t(·) denotes the first-order difference between con-

secutive time samples and f9(t) is log-energy emphasizing in-
stantaneous signal strength variation, where ε avoids numerical
underflow. Collectively, these statistics capture both the slow-
varying amplitude envelope and the fine phase fluctuations that
occur when human motion or object displacement alters the
propagation path. When concatenated across all k sub-channel
groups, the resulting feature dimension becomes C = 9k,
producing a compact yet expressive temporal feature matrix
F ∈ RC×T .

Temporal Window Segmentation To align with learning
frameworks, the continuous feature stream is partitioned into
smaller temporal windows of fixed length W and stride S.
Each segment Xi ∈ RC×W corresponds to a short-duration
snapshot of channel behavior, effectively converting long CFR
recordings into multiple training samples that capture localized
motion patterns. Using non-overlapping or partially over-
lapping windows allows PULSE to control redundancy and
temporal resolution depending on the dynamics of the activity.
This transformation also leads to a significant reduction in
input dimensionality compared to the raw CFR representation.
While the original CFR tensor H ∈ CT×F contains high-
resolution complex responses over all F sub-channels, the
extracted feature tensor F ∈ RC×T condenses this information
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into a compact set of physically meaningful descriptors of
dimension C = k × d, with k denoting the number of
sub-channel groups and d the number of temporal–statistical
features per group. Since (k× d) ≪ 2F , this conversion typi-
cally can achieve a dimensionality reduction of approximately
65–85%, depending on k and the feature configuration. Such
compression retains the most informative temporal variations
while discarding redundant spectral correlations, allowing
PULSE to remain computationally lightweight and memory-
efficient for real-time inference.

Normalization and Output After segmentation, PULSE
computes per-channel normalization parameters

µc =
1

NW

∑
i,t

Xi,c,t, σc =

√
1

NW

∑
i,t

(Xi,c,t − µc)2,

(2)
ensuring that all feature channels contribute equally during
model training and preventing amplitude-dominant bands from
biasing the learning process. Finally, the processed data are
saved as tensors X ∈ RN×C×W with corresponding class
labels y ∈ NN , normalization parameters µ, σ ∈ RC , and a
class-to-ID mapping file for reproducibility.

B. Feature Embedding and Activity Learning with 1D CNN

Following temporal feature extraction, PULSE derives em-
beddings from the extracted features and utilizes a lightweight
1D CNN to perform end-to-end supervised learning for clas-
sification task within each environment. The model simulta-
neously learns discriminative feature embeddings and the ac-
tivity decision boundaries from normalized temporal windows
X ∈ RN×C×W representing N samples, C no. of temporal
features, and W temporal windows. The dataset is divided
into training, validation, and test subsets using stratified par-
titioning to preserve class balance. Normalization parameters
are estimated only from the training set and applied to all
splits to ensure statistical consistency: µ = meann,t(Xtrain),
and σ = stdn,t(Xtrain). To enhance robustness against tem-
poral jitter and small channel fluctuations, each input window
undergoes mild augmentations, including circular time shifts
and Gaussian perturbations N (0, σ2

noise). These preserve the
temporal structure of CFR while improving invariance to phase
drift and environmental variations.

The CNN backbone fθ(·) consists of multiple temporal con-
volutional blocks with residual connections and dropout reg-
ularization. It produces both a compact temporal embedding
h and a class prediction z: z, h = fθ(x̃), z ∈ RM . Here,
h captures high-level temporal dynamics, while z encodes
class-level logits for M classes. The model is trained using
a supervised classification loss. By default, cross-entropy with
label smoothing ε is used: LCE = −

∑K
k=1 qk log pk, pk =

ezk∑
j ezj

where qk denotes the smoothed target distribution.
Alternatively, focal loss can be applied to emphasize hard
samples: LFocal =

(
1 − e−CE(z,y)

)γ
CE(z, y) with focusing

parameter γ > 0.
Training proceeds until the validation loss ceases to improve

for a predefined patience interval, and the best-performing
weights are restored for final evaluation.

C. Few-Shot Adaptation for Domain Generalization

To generalize effectively from a trained source environment
to a new target environment with limited supervision, PULSE
employs a two-stage adaptation strategy that leverages reusable
embeddings and non-parametric classification for low-data
transfer.

Source Pretraining: A temporal 1D CNN encoder with
attention pooling is pretrained on the source-domain data
to learn transferable temporal embeddings. Each normalized
input window x̃ ∈ RC×W is transformed into a compact D-
dimensional embedding e ∈ RD, where D denotes the latent
embedding dimension learned by the encoder. The encoder
is optimized using a joint objective that integrates cross-
entropy (CE) and supervised contrastive (SupCon) losses,
designed to enhance class discrimination while preserving
temporal coherence. The total loss function is expressed as
Lpre = LCE + λsc LSupCon, where:

LSupCon = − 1

|I|
∑
i∈I

1

|P(i)|
∑

p∈P(i)

log
exp

(
⟨zi, zp⟩/τ

)∑
a∈A(i) exp

(
⟨zi, za⟩/τ

) .
(3)

where z denotes the normalized projection of e, P(i) and
A(i) represent the positive and all anchor samples for instance
i, and sim is the cosine similarity. This pretraining process
aligns temporally correlated embeddings and reinforces inter-
class boundaries, producing a robust feature space suitable for
downstream few-shot adaptation.
PULSE Few-Shot Adaptation: When applied to a new

environment, only a few labeled samples per class are required
to perform domain alignment. The target data X are split into
a small K-shot support set S and a disjoint query set Q.
To compensate for statistical shift between domains, PULSE
employs a normalization blending strategy:

µ = (1− β)µsrc + βµsup, σ = (1− β)σsrc + βσsup, (4)

where β ∈ [0, 1] controls the contribution of source and target
statistics. All support and query samples are passed through
the pretrained encoder to obtain ℓ2-normalized embeddings.
For each class c, a prototype Pc is computed as the mean of
its support embeddings:

Pc =

(
1

|Sc|
∑

(x,y)∈Sc
e(x)

)
∥∥∥ 1
|Sc|

∑
(x,y)∈Sc

e(x)
∥∥∥
2

, (5)

and query samples are classified by cosine similarity:

ŷ(xq) = argmax
c

〈 e(xq)

∥e(xq)∥2
, Pc

〉
. (6)

This nearest-prototype classification in embedding space al-
lows non-parametric adaptation with minimal overhead and
high stability under small K.

Through this adaptation mechanism, PULSE effectively
aligns temporal embeddings between source and target do-
mains, achieving robust performance with as little as 5 s worth
of labeled data per class. The same CNN encoder serves
both pretraining and adaptation, requiring no architectural
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Fig. 3: PULSE Accuracy analysis under varying temporal window W and
baseline comparison using the selected configuration W = 8

modification while maintaining full interpretability and low
computational complexity.

III. EXPERIMENTAL DATASET

The experiments in this study are conducted using the
publicly available BeamSense dataset [7], which provides a
large-scale, real-world collection of Wi-Fi Channel State In-
formation (CFR) data for human activity sensing. The dataset
was recorded in three distinct indoor environments—kitchen,
living room, and classroom—to capture diverse propagation
conditions with varying furniture, obstacles, and layouts. Three
spatially separated Wi-Fi stations (STAs), denoted as STA1,
STA2, and STA3, were deployed at different positions within
each environment to emulate spatial diversity in sensing. Each
STA captured CFR data corresponding to twenty human activ-
ities, encompassing both stationary and dynamic motions- jog-
ging, clapping, push forward, boxing, writing, brushing teeth,
rotating, standing, eating, reading a book, waiving, walking,
browsing phone, drinking, hands-up-down, phone call, side
bend, check the wrist watch, washing hands and browsing
laptop, each lasting 300 s per session. The experimental setup
followed the IEEE 802.11ac MU-MIMO standard, operating
on channel 153 at 5.77 GHz with 80 MHz bandwidth, the
system continuously captured Channel Frequency Response
(CFR) from each STA through modified Nexmon-enabled
network interface cards. The CFR measurements across each
STA spanned 242 sub-channels, each representing the complex
channel response across one transmit and one receive antenna
links, forming a 1 × 1 × 242 MIMO CFR matrix per frame
[7].

For performance benchmarking, PULSE was evaluated
alongside three state-of-the-art baselines: (i) BeamSense [7],
a MU-MIMO based sensing system with few-shot adapta-
tion; (ii) SignFi [8], a CFR-based sign gesture recognition
framework; and (iii) OneFi [9], a cross-domain one-shot learn-
ing approach for gesture recognition. The dataset’s extensive
coverage, and multi-environment diversity, make it a robust
benchmark for validating the temporal feature extraction and
domain adaptation capabilities of PULSE.

IV. PERFORMANCE ANALYSIS OF PULSE FRAMEWORK

A. Performance of PULSE with Different Temporal Windows

In wireless sensing, the temporal window length (W ) deter-
mines how many consecutive CFR frames are aggregated to
capture motion dynamics. In PULSE, the windowing process
transforms sequential CFR streams into fixed-length temporal
segments, allowing the model to learn discriminative temporal
embeddings within each segment.
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Fig. 4: PULSE accuracy comparison of individual against combined Wi-Fi
stations across three indoor environments

We evaluate the impact of window size by varying W =
{4, 8, 16, 32} and report the model accuracy across three in-
door environments—living room, kitchen, and classroom—as
shown in Fig. 3a. The accuracy improves notably when
increasing the window size from W = 4 to W = 8, improving
around 6.16% in the living room, and 4.64% and 3.16% in
the kitchen, and the classroom respectively, indicating that
moderate temporal context enhances feature stability and dis-
criminability. However, beyond W = 8, the performance gain
becomes marginal (e.g., 99.72%–99.76%) while introducing
higher inference latency. Therefore, W = 8 is selected as the
optimal temporal window, achieving near-saturation accuracy
with minimal delay, making it suitable for real-time edge
sensing.

B. PULSE vs State-of-the-Art Approaches

We further benchmark PULSE against two established base-
lines—BeamSense and SignFi—across three indoor environ-
ments, as shown in Fig. 3b. PULSE achieves superior recog-
nition accuracy of 99.78%, 99.82%, and 99.86% in the living
room, kitchen, and classroom, respectively. In contrast, Beam-
Sense records 98.72%, 95.69%, and 94.67%, while SignFi
yields 92.64%, 94.64%, and 89.76% under identical settings.
The results highlight that PULSE consistently outperforms
both baselines, achieving up to 5.2% accuracy improvement
over BeamSense and around 10% over SignFi. This gain stems
from PULSE’s ability to extract temporal embeddings from
band-aware CFR features, capturing motion dynamics more
effectively than static channel-based representations.

C. Spatial Diversity Analysis of Sensing Stations

As depicted in Fig 4, PULSE demonstrates superior per-
formance when leveraging fused data from multiple Wi-Fi
stations. Even if an individual station fails to sustain high accu-
racy—for example, STA2 and STA3 achieve only 86.39% and
60.76% in the Kitchen and Classroom— PULSE framework
consistently extracts near-perfect accuracies of 99.82% and
99.86% from the combined signals. This robustness highlights
PULSE’s ability to intelligently integrate spatially diverse
information, and effectively mitigating the limitations imposed
by orientation of individual Wi-Fi stations. Consequently,
even under unfavorable spatial configurations, PULSE ensures
reliable and environment-invariant sensing performance.

D. PULSE Performance in Unseen Environment and Stations

As presented in Fig. 5, we evaluate the domain general-
ization performance of PULSE with data from unseen envi-
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Fig. 6: Comparison of PULSE performance across Wi-Fi stations with baseline
BeamSense, and SignFi.

ronment and sensing station. When trained on the classroom
dataset and tested on unseen dataset of living room and
kitchen, PULSE achieves an average accuracy of 95.84% and
95.05% respectively, outperforming BeamSense and OneFi by
over 7.1%, and 40% respectively. Similarly, training on kitchen
dataset and testing on the data from other unseen environ-
ments, yield similar accuracy, improving the performance of
PULSE by up to 9% over its nearest competitor BeamSense.
PULSE also demonstrates strong cross-station generalization
performance following the similar trend, as depicted in Fig. 6.

Whereas, PULSE used contrastive learning with few-shots
leveraging only 5s worth of data from unseen environment,
BeamSense takes 15s worth of data per activity to fine-tune
to new environment. Thus, PULSE not only generalizes effec-
tively across unseen domains but also achieves breakthrough
sensing performance under extreme data constraints.

E. Computational Efficiency and Model Compactness

Table I compares PULSE with state-of-the-art models–
BeamSense and SignFi, highlighting its drastic reduction in
computational burden. While BeamSense requires nearly 20 B
FLOPs and SignFi about 1.7 B, PULSE performs the same
sensing task with only 22.41 M FLOPs– over 900× and
75× fewer operations, respectively. PULSE also maintains a
competitive parameter count (1.47 M) and achieves an excep-
tionally low inference latency of 0.012 ms/sample, compared
to 22 ms for BeamSense and 0.62 ms for SignFi.

As presented in Table II, under varying window, FLOPs
scale linearly with temporal window length ranging from
22.41 M—179.26 M for window length W = 8—64, while
the inference latency remains below 0.025 ms. Contrarily,
increasing the sub-channel group size (k = 4–32) adds negli-
gible computational cost ranging from 21.89 M−−−25.50 M
FLOPs. Thus, the configuration of W = 8 and k = 8 offers
the best trade-off between accuracy, and computational burden,
while taking only 0.012 ms of inference time.

Note that, in this analysis with k = 8, and number of sub-
channels F = 242, the feature space is reduced from W×F×2
for CFR based approach, to W × C = 8 × 72 for PULSE,
resulting in an 85.12% reduction in dimensionality.

TABLE I: Analysis of computational efficiency of PULSE

Approach FLOPs(M) Params(M) Inference (ms/samp)
PULSE 22.41 1.47 0.012

BeamSense 20000 4.25 22.0
SignFi 1700 2.10 0.62

TABLE II: Computational Efficiency of PULSE Under Varying
Window and sub-channel Configurations

Window W (K = 8) FLOPs(M) Params(M) Inference (ms/samp)
8 22.41 1.47 0.012
16 44.82 1.47 0.012
32 89.63 1.47 0.014
64 179.26 1.47 0.023

Sub-channel
Group k (W = 8) FLOPs(M) Params(M)

Inference
(ms/samp)

4 21.89 1.43 0.011
8 22.41 1.47 0.012
16 23.44 1.53 0.012
32 25.50 1.66 0.012

V. CONCLUSION

This letter introduced PULSE, a lightweight and domain-
adaptive wireless sensing framework that transforms complex
CFR streams into compact, interpretable temporal representa-
tions. By extracting physics-aware temporal features and lever-
aging contrastive few-shot learning, the framework achieves
robust domain generalization across unseen environment and
stations with only 5s of data from unseen domain. Exper-
imental evaluations on the BeamSense dataset demonstrate
that PULSE attains up to 96% of accuracy in cross-domain
setup which is 9% higher than the state-of-the-art approaches.
These results validate PULSE as a practical step toward real-
time, generalizable framework, enabling efficient and scalable
deployment of wireless sensing at the network edge.
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